Faster identification of PVY resistance

Faster identification of PVY resistance

A virologist with Agriculture and Agri-Food Canada (AAFC), in collaboration with breeders, has developed a way to speed up marker-assisted selection in the effort to identify potato virus Y (PVY) resistant material.

Researchers look to soil for scab solutions

Researchers look to soil for scab solutions

For potato growers around the world, common scab is a constant vexation.

Fast-tracking traits for improved potato varieties

Fast-tracking traits for improved potato varieties

Benoit Bizimungu is quick to identify top breeding priorities for implementing marker-assisted selection at Agriculture and Agri-Food Canada’s (AAFC) Fredericton Research and Development Centre.

New Zealand farmers have invented a new kind of potato they claim has 40 percent less carbs.
Whether its disease resistance, tolerance to stress in the environment or better cold-storage capabilities, research scientists have been incorporating wild potato genetic resources into breeding lines for years to develop more resilient potato varieties. At Agriculture and Agri-Food Canada's (AAFC) Fredericton Research and Development Centre, this practice is being increasingly refined in order to meet the needs of the industry which range from higher yields to disease and drought resistance.
A virologist with Agriculture and Agri-Food Canada (AAFC), in collaboration with breeders, has developed a way to speed up marker-assisted selection in the effort to identify potato virus Y (PVY) resistant material. The method – known as high-resolution melting markers, or HRM markers – has been used in other breeding programs, but Xianzhou Nie, a research scientist at the Fredericton Research and Development Centre, has perfected it so it can be used to select genetic material that is extremely resistant to PVY infections. As most growers know, PVY infection can devastate a crop, making the choice of seed important. Severe PVY pressure can cause as much as a 90 per cent yield reduction. Choosing seed that is PVY free, therefore, is the first step towards minimizing losses. However, aphids can also transfer the disease, which adds to the workload and cost of production when growers have to spray mineral oil to ensure the spread of aphid-transmitted PVY is minimized. The best solution from economic and environmental perspectives would be to have potato varieties that are resistant to PVY, which would also eliminate the spread of the disease. Nie hopes this research and development of a faster method to identify PVY-resistant and susceptible parent material and progeny will vastly improve and fast-track potato breeding. “Using HRM markers, we are identifying efficiently and accurately, markers associated with genes controlling PVY resistance in potatoes,” he explains. “If a potato inherits the resistance gene, it will not develop the disease. This will be very useful for breeders making selections in breeding programs.” Conventional breeding programs can screen thousands of crosses; it isn’t until the most promising are faced with PVY pressure that breeders know for sure if they have a potential disease-resistant variety. Traditional screening for PVY resistance is carried out mainly in the greenhouse by inoculating each and every offspring/progeny plant with the virus and then waiting for symptoms to develop and laboratory detection of PVY to be completed. By using the HRM marker technique (a procedure carried out in a laboratory as well), breeders will not only be able to identify and select parental material that is PVY-resistant or has “extreme resistance” prior to making crosses, but they will also be able to screen for progeny/offspring inheriting the resistance efficiently in the laboratory setting. Nie estimates that if 200 plants are bred using traditional selecting methods involving PVY inoculation in the greenhouse, it can take two to three months to determine which progeny, if any, are resistant to PVY. “Using the HRM marker method, we can screen for PVY-resistant plants in two to three days,” he says. By determining the value of using HRM markers in PVY screening, Nie says that in the future the method could be used to identify other diseases, or to isolate desirable traits. He says using HRM marker technology allows a researcher to run 96 samples in three to four minutes after amplification of the DNA pieces containing the markers. There’s no question the potential for breeding programs in the future is enormous. “In our breeding program at Agriculture and Agri-Food Canada, we anticipate the method being implemented for screening for disease resistance to speed up the selection process,” Nie says. Because the method was perfected at a public institution, it is not protected by copyright, which makes it accessible to any breeding program in the world. “We have provided the technology and now anyone can choose to use it.” Early in 2016, this new form of PVY resistance identification was tested on some of the latest clones bred at AAFC. The presence of the HRM markers that indicate PVY resistance was detected, which signals the potential varieties will be PVY-resistant. The breeders are now looking for germplasm that would have extreme resistance to PVY because those markers are present. Nie envisions a day when PVY-resistant potato varieties will be common, giving growers one less disease to worry about.     
Just because black cutworms don’t overwinter in Canada doesn’t mean they aren’t a threat to potato crops. The insects spend their winters in the southern United States but travel north on low-level jet streams and, once they cross the border into Canada, they look for a tasty food source. Black cutworm moths prefer some of the weeds that grow in and around fields and, while potatoes are not their favourite food, they will adapt and can wreak havoc on an unmonitored field. A researcher at the University of Minnesota says the cutworms’ new interest in potatoes could be the result of a change in potential host plants. If the moth’s desired weed is being well controlled in a field, it will eat what is available where the wind sets it down. “Black cutworm moths are active flyers,” explains Ian MacRae, the extension entomologist at the university’s Crookston research station. “These insects can travel hundreds of miles in a short period of time aided by an extremely efficient bug highway [a jet stream].” MacRae says if the wind and temperature are conducive and Canadian potato producers are able to get their crop planted in good conditions, there is a chance the moths will arrive about the same time as the plants are emerging. The possibility exists that early arrival could spawn a second generation of the insects later in the season. He says, once landed, reproduction occurs when the moths lay eggs. The emerging larvae will feed on the foliage, but once at the fourth or fifth larval stage they will begin actively eating near the base of the host plant, cutting it off. “The first you might notice a cutworm problem will be plants that are cut at the base or wilting,” MacRae explains. “At night, the worms burrow into the soil and if the tubers are close to the surface, they will burrow into the tuber. They can do more damage to tubers in dry conditions because cracks in the soil will give the cutworms access to what is underneath.” Damage to potato crops early in the season can be a greater problem because the young plants will not recover from being chewed off. There is a possibility that the seed piece might send up another shoot, but the crop will be set back. MacRae suggests early scouting will help identify the problem and allow time for control. There are effective insecticides for control of black cutworm and there are sources of natural mortality, such as predators or parasitic wasps. Birds may be less effective because of the location of the worms and their habit of eating at night. “If you find yourself at a threshold of about 30 per cent of your plants cut, you may want to apply an insecticide,” MacRae says. “If defoliation is this high, it may be that natural mortality sources are not functioning well.” Ensure proper identification of the larvae as black cutworms so the correct product can be chosen for control. Combining regular field scouting with pheromone or light traps to catch the male moths is an effective way to identify the insects. “When scouting, look for stalks at an odd angle or wilting,” MacRae suggests. “Look in the evening when the cutworms come out to feed, and look as much as a half metre away from the plant because they are good walkers. Black cutworms are aptly named because they are a dark caterpillar with a waxy appearance. They will often curl into a C if disturbed. They hang out during the day under clods of soil or in cracks.” MacRae says climate change may be the reason black cutworms are being seen farther north. He doesn’t believe they will begin to overwinter in Ontario or the Prairies, but a warmer climate means they develop faster and may overwinter in more northern states, making the migration north earlier and causing greater problems. “Black cutworms have certainly become a problem in Ontario in the last few years,” MacRae says. “They can be a significant pest issue.” MacRae adds there are some cultural practices that may minimize the impact of black cutworms when they arrive. Planting late can put new, young plants directly on a collision course with the moths and their offspring, so plant early, if possible. He says controlling weeds will reduce the areas where the moths might lay eggs. Growers in the United States use pre-plant tillage to turn over the soil to destroy potential habitat. To date, there is no accurate monitoring system in place for potato crops, according to MacRae, but the cutworms also like corn and the corn growers in some states, such as Iowa, have a black cutworm monitoring network. “The moths seem to appear in Ontario about three weeks after they are seen in the United States,” he says. Ontario growers could tap into the monitoring networks south of the border and use that information as an early warning system, he suggests. Black cutworms could be considered a stealthy yield robber because by the time you begin to notice a problem, it could be a challenge to execute effective control. The best defence is early and frequent field scouting and adopting cultural practices that could minimize the attractiveness of the crop. MacRae believes Canadian potato growers will see black cutworm more often in the coming years, so preparation for and understanding of the pest is a wise approach.   
There’s no current technology to detect acrylamide precursors quickly and without destroying the spud, but a new technique developed by Lien Smeesters from the University of Brussels might help weed out potentially toxic potatoes before they even go to market. In Smeesters’ design, a laser uses infrared light to detect acrylamide, which scatters the light in a unique pattern, instructing the machine to knock the toxic potato out of circulation. | READ MORE
With planting season just around the corner, researchers at Agriculture and Agri-Food Canada are reminding home gardeners to take precautions to prevent the infection and spread of late blight. Planting clean and disease-resistant seeds is the best way to prevent the spread of late blight to other gardens and potato farms.What is late blight?Late blight is a disease caused by an organism that produces a white fuzz on the underside of leaves which releases millions of spores that float through the air to infect other plants. The spores land on a susceptible leaf, germinate, and cause brown oily lesions. The spores splash on the ground and infect potato tubers, which become brown and rusty looking, with a granular texture. Crop losses due to late blight can cost the Canadian potato industry tens of millions of dollars annually.Protecting the potato industry AAFC late blight specialist Rick Peters says taking steps to prevent the disease from infecting potato crops is important to help protect the health of the industry. He advises home gardeners to ensure their tomato seeds are resistant to the US-23 strain of late blight. Resistant seeds can be purchased at most garden centres. Certified disease-free seed potatoes can also be found at garden centres or purchased from a local seed potato grower. Peters says potatoes grown from last year’s garden or those bought from the grocery store are not suitable for planting as these tubers have not been tested and certified as disease-free and could be susceptible to a variety of potato diseases. AAFC has partnered with industry leaders to identify and track late blight strains in production areas across the country. Scientists are also looking at biological characteristics of the different strains including how they respond to treatments. This knowledge allows for better management and control of the strains in Canadian potato and tomato production areas. While scientists continue to study the disease, they maintain that an ounce of prevention is worth a pound of cure and home gardeners have an important role to play. If you spot a suspected late blight infection in your garden this season, please contact the Department of Agriculture, Aquaculture and Fisheries at 1-866-778-3762 for information on how to properly dispose of infected plants.
 Syngenta Canada Inc. has announced the launch of Aprovia Top fungicide, offering Canadian potato growers a new tool for foliar early blight control and brown spot suppression. Early blight, caused by the Alternaria solani fungus, is found in most potato growing regions. Foliar symptoms include small, brown, irregular or circular-shaped lesions that form on the potato plant’s lower leaves later in the season. The disease prefers warm, dry conditions to develop, and can be more severe in plants that are stressed and weakened. Brown spot, caused by the Alternaria alternata fungus, is closely related to early blight and is found wherever potatoes are grown. Unlike early blight, brown spot can occur at any point during the growing season, producing small, dark brown lesions on the leaf surface. Aprovia Top fungicide combines two modes of action with preventative and early curative activity on these two key diseases. Difenoconazole (Group 3) is absorbed rapidly by the leaf and moves from one side of the leaf to the other to protect both surfaces against disease. Solatenol (Group 7 SDHI) binds tightly to the leaf’s waxy layer and is gradually absorbed into the leaf tissue to provide long-lasting, residual protection. Aprovia Top is available now for use in 2017 production. In potatoes, one case will treat up to 40 acres.  
For potato growers around the world, common scab is a constant vexation. Causing millions of dollars in losses each year, common scab is difficult to control. Recent research, however, has identified options for suppressing the disease, if not getting rid of it all together. Some of the research centres on what soil properties make scab more conducive, while other studies look at natural products that can slow the spread. “Scab is a troublesome disease,” admits Robert Coffin, a potato agrologist in Prince Edward Island. “There are different genetic strains of scab as well; there are at least five species, so it’s a constant problem. For example, common scab and powdery scab are two different organisms, but both diseases can cause losses in sales because scab infested tubers cannot be sold for table, processing or seed.” While large strides have been made to control scab, such as using natural bacterial products, seed treatments, soil fumigants, and attempts to find genetic resistance, the disease continues to confound researchers and growers alike. Management options are limited but several help, such as planting varieties with “reasonable resistance” or fumigating the soil, which has proven successful, although is it not permitted for use everywhere. Some diseases can’t survive in the soil without a host, according to Claudia Goyer, a research scientist with the Agriculture and Agri-Food Canada (AAFC) Fredericton Research and Development Centre. But Goyer says scab can live successfully in the soil without potatoes being present, making it a problem when potatoes are planted. “The scab bacteria grows on organic matter, like plant residues,” Goyer explains. “What makes it difficult is there are areas of fields that are infested while others are healthy and we do not know why. We now believe there is something different between scab-infested or healthy areas, like soil properties or microbial communities, that could be conducive or suppressive to scab.” To test this theory, Goyer and her colleagues examined either healthy or scab-infested areas of nine potato fields in Prince Edward Island, New Brunswick and Quebec. The same variety of potato – Red Pontiac – was grown in each field and the team gathered soil samples three times during the year. Several soil properties (including pH, organic carbon, micronutrients and soil texture) were measured to attempt to determine the difference between the soils that contained scab and those that didn’t. “We are trying to learn if it is something physical, chemical or biological, such as soil microbial communities in the soil, that promotes scab,” Goyer explains. “Some microbial communities suppress scab.” Not surprisingly, she also discovered that the greater the presence of the scab bacteria, the greater the disease pressure. “We are still analyzing our data, but we are seeing a correlation between scab and pH levels, with more scab in neutral pH soil. We are also seeing that soil carbon to nitrogen ratio, and nutrients including potassium, magnesium and calcium, were correlated with scab severity, but we aren’t sure why yet.” Advancements in soil science are making it possible for the researchers to analyze soils more effectively and they are also able to assess new control options more efficiently. Coffin conducted research on Microflora Pro, a natural product that contains two species of Bacillus bacteria. He says the product worked really well in 2015, but the results were inconsistent in 2016. “Bacterial cultures don’t always stay stable in storage or in soils,” Coffin explains. Therefore, understanding scab and how it infects soil, and continuing work to breed resistant potato varieties, would offer better disease management options. Goyer’s work on analyzing soil and understanding why certain fields are infested with scab may also help the developers of microbial products create formulations that will work best. The advent of more sophisticated soil science research is paving the way for a better understanding of what bacteria will work best in soil. “We can truly study soil communities so much more than we could years ago using next-generation sequencing,” Goyer says. “We can see how diverse the soil bacteria and fungal communities that are present in soil are now because of the depth of sequencing. We can capture most of the species present with this approach.” This type of work will help explain the difference in the diversity of soil microbial communities between healthy and scab-infested areas in potato fields. “Once we understand better what a healthy soil microbial community is,” Goyer continues, “we can see if we can change soil microbial communities so they suppress scab using agricultural practices, inputs like manure and compost, or use of natural bacterial products that suppress scab. “In the future, we will be able to harness the power of the soil,” Goyer says. “We may be able to manipulate bacteria communities to improve all crops and we could use them to suppress disease.” Both Goyer and Coffin approve of the idea of using one bacteria to control another. In theory, the best solution would be to combine several bacteria into one product to help with stability, reduce the potential of resistance developing and, possibly, offer balance in the soil. But with so many variables, it takes a great deal of research to get it right. Goyer says one possibility is that a certain bacteria could be targeted to where it is needed most, similar to the way precision fertilizer application works. Higher amounts of scab-fighting bacteria could be targeted to where soil tests show a high concentration of the disease, and less could be added where scab pressure is low, creating an overall balance across the field. “Progress is being made,” Coffin says. “With 30,000 to 40,000 genes in a potato plant, it’s like a giant Rubik’s cube when trying to breed a potato with all the desired traits.” Of course, scab resistance is only one of the desirable traits, which makes finding a solution in the soil another option for controlling scab – and one that Goyer believes shows great promise going forward.
Benoit Bizimungu is quick to identify top breeding priorities for implementing marker-assisted selection at Agriculture and Agri-Food Canada’s (AAFC) Fredericton Research and Development Centre.
More Growing Forward 2 funding has been put in place to help expand markets for Canadian potatoes. The project, funded under the AgriMarketing Program, provides the Canadian Horticultural Council with up to $274,714 to help grow foreign and domestic markets for Canadian potatoes through trade shows, targeted advertising, incoming missions, market research and development, and product promotion. This investment is part of the federal government's plan to help Canadian farmers expand markets at home and abroad. Canadian potato exports are currently $1.6 billion dollars annually.
Researchers at the Texas A&M AgriLife Research plant pathology team have intentially infected potato plants with the bacterium that causes zebra chip in order to identify potato varieties with genetic resistance. | READ MORE
There are other, more sophisticated methods of testing for the presence of late blight spores in growers’ fields, but that’s precisely the reason Eugenia Banks selected a very simple test for her 2016 project.
“Although potato psyllids have been known in the past to cause some damage themselves, the real concern is mainly from the bacterium, and we don’t have it in Canada yet. But if our potato psyllid population continues to increase – as it has done during 2013 to 2016 – and if it becomes more continuous with U.S. populations, and if tomato and potato plants (and tubers) are shipped more frequently, then it could arrive,” says Dan Johnson, an entomologist at the University of Lethbridge. | READ MORE
The Prairie Pest Monitoring Network (PPMN), now in its 20th year, continues to provide timely crop insect pest risk and forecasting tools for growers and the industry across Western Canada. As technology and forecasting tools advance, so does the ability of the network to provide relevant insect pest information related to scouting, identification and monitoring tools and information, plus links to provincial monitoring and support relevant to the Canadian Prairies. | READ MORE
  An Islander has heeded the call to mass manufacture a trap to fight P.E.I.'s wireworm pest.
Nov. 28, 2016, Prince Edward Island – Health Canada's proposal to phase out a pesticide over three years will have a significant impact on Island farmers looking to control the Colorado potato beetle, says the P.E.I. Potato Board. | READ MORE
As part of the regular review process, Health Canada has completed its re-evaluation of imidacloprid, and has published its draft risk assessment for public comment. The assessment proposes current use of imidacloprid is not sustainable, and the levels of this pesticide that are being found in waterways and aquatic environments are harmful to aquatic insects, such as mayflies and midges, which are important food sources for fish, birds and other animals. Concentrations of imidacloprid in surface water can range from non-detectable to, in some rare cases, levels as high as 11.9 parts per billion, according to Health Canada. Scientific evidence indicates levels above 0.041 parts per billion are a concern. To address the risks identified, Health Canada has published a proposed risk management plan for public comment, which includes a proposed three-year phase-out of agricultural uses of imidacloprid in order to address risks to aquatic insects. In some cases, where there are no alternative pest control products available, a longer phase-out transition period of five years is being proposed. In a press release, Health Canada said it is consulting on these proposed mitigation measures, and the final re-evaluation decision and risk management plan will take into consideration any comments received during the consultations.  The consultation phase includes a 90-day commentary period in addition to a multi-stakeholder forum that will discuss any proposals for potential alternative mitigation strategies that would achieve the same outcomes in a similar timeframe.  Any proposals for continued registration will need to clearly demonstrate concrete actions to ensure levels of imidacloprid in water will be reduced below the level of concern. Based on the findings of the re-evaluation assessment on imidacloprid, Health Canada is also launching special reviews for two other widely used neonicotinoids: clothianidin and thiamethoxam. These special reviews will examine any potential risks these pesticides may pose to aquatic invertebrates, including insects, as they are also being detected frequently in aquatic environments. In the press release, Health Canada said it will provide updates as new information becomes available.
Bayer has launched Velum Prime nematicide, the first non-fumigant nematicide registered for potatoes in Canada. Velum Prime is a new mode of action and chemical class (pyridinyl ethyl benzamide) for nematode protection. It offers growers effective nematode protection that helps sustain plant vigor and maximize crop yield potential, according to a press release.Recent trials of Velum Prime demonstrated consistent yield and quality increases and reduction in plant parasitic nematodes, including root lesion, root knot and potato cyst nematode. Velum Prime is applied in-furrow at planting. It comes in a liquid formulation that offers reliable efficacy at low application rates making it ideal for use with existing in-furrow application equipment. Applied in-furrow, Velum Prime offers the added benefit of early blight protection. Maximum residue limits for Velum Prime applied in-furrow are in place supporting trade in North America and Europe. Additional MRLs supporting trade in other key export countries, including Japan, are expected early in 2017. For more information regarding Velum Prime, growers are encouraged to talk to their local retailer or visit cropscience.bayer.ca/VelumPrime.
May 4, 2016, Ontario – The early-planted potato crop in the Leamington area is sprouting nicely with strong, healthy sprouts. In the Simcoe-Delhi area, the second earliest area, planting is progressing well, according to the potato crop update from Eugenia Banks.A few seed lots coming from other provinces had high incidence of common scab and silver scurf.  Seed-borne silver scurf Silver scurf is a serious problem for fresh market growers. The fungus causes silvery brown lesions that can grow and join together covering most of the skin of the tuber. The fungus does not survive for very long in the soil, but does move from infected seed to daughter tubers. The variety Superior is very susceptible to silver scurf. If infected seed is planted, plan to harvest the crop as soon as the skin is set. Leaving potatoes in the ground after skin set stimulates the development of the fungus and results in more blemishes. Silver scurf also spreads easily in storage. High humidity increases sporulation, and air circulation in the pile spreads the spores to healthy tubers.  Quadris in-furrow and Emesto Silver as a seed treatment are labelled for silver scurf. Post-harvest applications of phosphorous-acid based fungicides have been reported to reduce the incidence of silver scurf. Late blight There were several outbreaks of late blight this year on potatoes and tomatoes grown in Florida. South Carolina has also reported late blight on tomatoes. All of the outbreaks were caused by US 23 strain. According to the potato pathologist at the University of Wisconsin, US 23 is susceptible to Ridomil. 
  New hope is on the horizon for potato growers engaged in the ongoing battle against Colorado potato beetle (CPB). Researchers are currently field-testing one of the most effective controls ever developed for the potato’s chief insect villain, and it is entirely chemical-free. RNA interference (RNAi) is a biological process whereby RNA (ribonucleic acid) molecules activate a protective response against parasite nucleotide sequences by inhibiting their gene expression. In other words, it is the method by which organisms – including pests such as CPB – defend themselves against threats and regulate their own genes. But the same process that is used by a beetle to protect itself can be used to destroy it when it consumes the long double-stranded RNA (dsRNA) in genetically modified plants. Since 2009, researchers at the Max Planck Institute in Potsdam and Jena, Germany, have been developing genetically modified potato plants to enable their chloroplasts to accumulate dsRNA targeted against essential CPB genes. After feeding on a potato’s leaves – and ingesting the dsRNA – the beetles in the study showed 100 per cent mortality within five days. Why chloroplasts, rather than plant cell nuclei? In past breeding projects, expression of dsRNA in potato plants’ nuclei has proven inefficient because natural RNAi pathways in nuclei prevented the plant from producing enough long dsRNA. But long dsRNA are free to accumulate in chloroplasts – which have no RNAi mechanism – and the plants are fully protected against CPB. According to Jiang Zhang, a professor with the College of Life Science at Hubei University in China, and the lead on the project, the technology shows great promise for the future of pest management, but there are no immediate plans for commercialization until all regulatory hurdles have been overcome. “We encourage more scientists and industry involvement in this field for a better future,” Zhang says. “There is still a long way to go to make it really useful in daily life and be accepted by customers.” RNAi-based biocontrolRNAi for control of CPB has also gained significant momentum in private research and development. Monsanto and Syngenta have both devoted major investments toward the technology. In early 2015, Monsanto’s BioDirect technology platform targeted at CPB advanced to Phase 2 – early product development – of the company’s research and development pipeline. The product will have to complete advanced product development and pre-launch before broad commercialization early in the next decade. While the principle is the same, Monsanto’s product works differently than Max Planck’s modified potato plant: it is sprayed onto the plant’s foliage. Rather than expressing dsRNA in its leaves, dsRNA is applied exogenously to the plant. “The Colorado potato beetle consumes the leaves of the potato plant where we can focus the BioDirect application, versus needing a plant to produce the dsRNA targeting the pest below-ground where sprays cannot reach,” explains Greg Heck, weed control team lead for Monsanto’s chemistry technology area. Heck says there are thousands of dsRNA naturally present in host plants that serve a variety of functions, and beetles consume and incorporate dsRNA all the time. “When targeting them for pest control, we seek to supply one additional dsRNA that will turn down a specific gene critical to their ability to feed and grow on the plant. “Field research conducted on our BioDirect treatment for Colorado potato beetles has already demonstrated some early positive results. This includes reduced Colorado potato beetle larva infestation and plant defoliation in multiple geographies.” Syngenta’s most advanced RNA-based biocontrol targets CPB in potato – and is also applied via a spray. The company has tested the product in multiple geographies over several years with positive results, says Luc Maertens, Syngenta’s RNAi platform lead based in Belgium. The company hopes to commercialize the product early in the next decade pending continued development and regulatory reviews. Maertens says the company’s biocontrol is highly selective and starts to work before CPB can cause too much damage. “The biocontrol is not systemic [in the plant], nor does it work through contact,” he says. “It does not change or have any effect on the DNA of the pest, nor does it involve genetic modification of the plant.” No technology can work forever, however. Insect resistance to RNAi is a potential risk – one companies and researchers alike are keen to avoid so the technology has maximum benefit and longevity. Maertens says that as resistance emerges to existing technologies, and the pest spectrum shifts along with climate change and other factors, growers’ needs will change. “Those challenges cannot be answered by only one technology,” he says. “It is imperative to gain insights into probable resistance mechanisms to RNAi triggers in insects, to monitor possible resistance in the field, and to support the use of the technology with appropriate stewardship requirements.” Of the two methods of RNAi application (genetic modification and spray-on), Zhang believes the former might be better for growers. “Applying dsRNA exogenously is much less cost-effective than expressing dsRNA in the plant itself,” he says. “Spraying may also cause other potential problems in the environment.” RNAi is not meant to be a silver bullet and should be used as part of a multifaceted pest control strategy. Regardless of the method of application, RNAi may soon be working in a field near you.      
Nov. 10, 2015 – It is never too early to find out about the new crop-protection products, reminds Eugenia Banks, potato specialist at OMAFRA, in her latest potato update. These new products were recently registered and should be available for the 2016 season. Here is a list of pesticides, some with new active ingredients: Trade name Application method Disease or insect Aprovia(Syngenta) Group 7 In-furrow *Suppression of Rhizoctonia stem canker, stolon canker and black scurf Sercadis (BASF) Group 7 Foliar and aerial Control of early blight and white mould.Use of a non-ionic surfactant is recommended Sercadis (BASF) Group 7 In-furrow Control of Rhizoctonia canker Voliam Express(Syngenta) Group 3A and 28 Foliar Control of black curworm, variegated cutworm, armyworm, potato psyllidActive ingredients: pyrethroid + diamide Agri-mek SC(Syngenta) Group 6 Foliar Control of potato psyllid and spider mites (not a pest in Ontario) Control is at least 85 per cent control *Suppression is 65 to 85 per cent control "May provide some control" is less than 65 per cent control. There are also label changes to some registered products. For instance, the label of Rampart (phosphite) has been expanded to a foliar application for suppression of late blight and pink rot. In general, any product that suppresses late blight should be tank mixed with a compatible control product. A better approach would be to tank mix two compatible control products. If the weather is favorable for late blight, this disease can explode and devastate potato fields very quickly. There are new registrations for potato psyllids. This tiny insect is the vector of the bacterium that causes zebra chip. This past season, I placed several yellow sticky cards in three Alliston fields to monitor for potato psyllids, but no potato psyllids were caught on the cards. In the past, this insect has been reported in British Columbia, Alberta, Saskatchewan and Quebec. Psyllids were found in Ontario a few years ago, but only in a greenhouse, not in the field. It is always good to have registered products available for the control of potential pests. There will be more updates to come as new products are registered. 
Severe Colorado potato beetle larval damage to potatoes. Photo by Vikram Bisht, MAFRD. Colorado potato beetle (CPB) has been a challenging pest for potato growers for more than a century, and today it continues to be the most damaging insect defoliator of potatoes across Canada and the U.S. If uncontrolled, growers suffer yield losses and potential crop failure in potato crops and other field vegetable crops such as tomatoes and eggplant. Growers continue to rely on insecticides for control, however CPB is very adept and successful at developing resistance, creating additional challenges for researchers, industry and growers.  With increasing potato farm size and repeated use of effective insecticides, there has been high selection pressure on CPB to survive. Insecticide resistance develops largely from the overuse and repeated application of chemicals with similar modes of action that increase the selection of the resistant individuals in the population. “Colorado potato beetles resistant to DDT were first reported in 1955, and have since developed resistance to over 51 different insecticides, including imidacloprid and eight other neonicotinoids in the U.S.,” Ian Scott, research scientist with Agriculture and Agri-Food Canada (AAFC) in London, Ont., says. “Colorado potato beetle resistance in Canada has developed more slowly, with the first findings of resistance in 2003, to imidacloprid (Admire), the first neonicotinoid registered in Canada, and increasing reports of problems and crop failures in Ontario and Quebec by 2007.”  In 2008, Scott and colleagues initiated a four-year project to survey CPB neonicotinoid resistance in Canadian potato fields. Growers and agronomists from across Canada sent live samples to AAFC every summer. “We partnered with different chemical companies on the project and, depending on which products were surveyed in a particular year, we conducted bioassays in the lab,” Scott says. “We were able to screen quite a few populations of Colorado potato beetle through the bioassays. We were trying to confirm what growers and extension people were seeing related to resistance concerns with registered neonicotinoid uses. Also, some companies were planning to introduce new products of the same class or different groups and wanted to see if there was any potential cross-resistance with the older products.”  The results of the four-year survey confirmed previous studies showing that many CPB populations have become less sensitive to imidacloprid and that cross-resistance with the second-generation neonicotinoids thiamethoxam and clothianidin is a growing concern. Scott adds the survey also demonstrated cross-resistance is on the rise. “Using comparisons of Colorado potato beetle mortality generated from lab bioassays with Admire, Actara and Titan, a strong positive correlation indicated there is potential for cross-resistance between these three neonics,” Scott notes. “However, cross-reaction correlation was weaker between neonic Admire (Group 4A) and diamide insecticide Coragen (chlorantraniliprole, Group 28), indicating the cross-resistance between these classes is less likely to develop.”  According to Vikram Bisht, plant pathologist with Manitoba Agriculture, Food and Rural Development, the Atlantic provinces, and Quebec and Ontario have had a greater problem with CPB resistance to Group 4 insecticides. “However, Manitoba has seen some population shifts to resistance,” he notes. “Alberta currently does not have serious issues and so far even older chemistries appear to still be effective there. Resistance to the newer insecticides is highly likely if the products are continuously used without proper insecticide resistance management practices being applied. It is important to rotate chemistries to prevent multiplication of insecticide resistant populations.”  Vikram adds CPB populations collected from treated fields in Manitoba in 2012 and 2013 and tested by Scott were also found to be imidacloprid resistant (with less than 30 per cent mortality) or showed reduced sensitivity to clothianidin or thiamethoxam (with 30 to 70 per cent mortality). Repeated use of similar mode-of-action insecticides may often lead to development of cross-resistance against newer insecticides, even though they had not been previously applied. Therefore, resistance against clothianidin and thiamethoxam has a greater chance of appearing in imidacloprid-resistant CPB populations. “Generally, every commercial grower treats seed potato for Colorado potato beetle and in most cases control is quite effective,” Bisht says. “In areas where resistance is developing and in situations where growers also need to use a foliar application for in-crop control, they must make sure to use a different chemistry in-crop than was used for seed treatment. There are at least five different seed treatment or in-furrow chemistries and a few other chemistries for in-crop, so growers do have options available. Growers should make rotating insecticide chemistries a priority whether or not they have resistance concerns, as it is good practice to ensure long-term use of the good tools available.”  Bisht adds crop rotations of two years or longer are needed to be effective. However, fields must not be adjacent to last year’s crop. “Short distances from previous potato crops reduces the advantage of crop rotation, since the overwintering Colorado potato beetle adults from last year’s field can easily crawl to adjacent fields. Also, Colorado potato beetles can fly short distances during warm days and can easily move 100 to 200 metres.” New research and management options“We are working on other projects focused on understanding the mechanisms responsible for resistance of Colorado potato beetle through molecular and biochemical analyses,” Scott says. “We have maintained a number of Colorado potato beetle colonies in the lab for use in various projects; for example, screening alternative biopesticide products and the use of natural plant compounds as insecticide synergists.”  One recent project studied the potential use of dillapiol, the main constituent in Indian dill (Anethum sowa), as a synergist to help improve insecticide activity and longevity, and control of resistant pest populations. Synergists have a long history of use, one of the most frequently used ones being piperonyl butoxide (PBO) in combination with the natural insecticide pyrethrum. PBO is a very effective synergist but has related toxicological concerns. “Our laboratory trials testing of pyrethrum alone versus pyrethrum combined with dillapiol indicated that the synergist increased the activity of pyrethrum against insecticide-susceptible and -resistant Colorado potato beetle,” Scott explains. “In field trials, both the PBO and dillapiol synergized pyrethrum had 10 times the efficacy of pyrethrum alone. We continue to work on dillapiol and other natural plant-derived synergists that may offer compounds with improved health and environmental safety and potential for organic certification.”  Research continues on other strategies to help growers manage the challenges of CPB. “There continues to be a focus on the development of new varieties with Colorado potato beetle resistance, however transgenic varieties have not yet been accepted by the market,” Bisht says. “Plant breeders are also using conventional breeding to introduce natural resistance genes from wild species, and hopefully in the future varieties will become available. “There are other cultural practices that can be options for organic or smaller growers, but so far most are not practical for larger commercial growers. There is a new biological insecticide available – Novodor (Bacillus thuringiensis subsp. tenebrionis, strain NB-176) – but it is not currently used by commercial potato growers. Plastic-lined trenches on field edges could be effective for small farms, which trap Colorado potato beetle and prevent movement into the field.”  Considerable efforts continue to be focused on addressing resistance. Scott and Bisht remind growers everyone must do their part to be vigilant in monitoring and scouting for CPB resistance, follow proper insecticide resistant management practices and alternate classes of insecticides available. “The survival of beetles after an insecticide application could be due to a variety of factors, including improper coverage, failure to apply the full rate of insecticide, or precipitation soon after application and existence of actual insensitivity (tolerance/resistance) to the insecticide,” Scott says. “It is very important for growers and industry to practice good stewardship and maintain the use of these products as long as possible. It takes a considerable [amount of] resources, time and funds to develop new chemistries, so protecting the tools we have as long as possible is a best practice.”   Burn, beetle, burnIn February 1994, Potatoes in Canada magazine, a sister publication to Top Crop Manager magazine, published a story with an eye-catching headline: “Burn, beetle, burn.” The story explains that in the summer of 1992, field trials began on an eight-row flamer designed to control Colorado potato beetles (CPB) that had recently demonstrated resistance to traditional chemical treatments. The flamer tests were initiated by ICG Propane, in co-operation with the Ontario Ministry of Agriculture, the University of Guelph, and growers in Alliston and Leamington, Ont. The trials showed that flaming had several mechanisms for limiting beetle damage. The most obvious was that it could kill the beetle adults outright. But the trials also shows there were three secondary controls: First, flaming caused sufficient damage to the CPB so that it died in the near term; second, if eggs and antennae were damaged, the beetles became disoriented and, thus, unable to feed or mate; and third, the heat from the flaming resulted in a high mortality for the eggs already laid. The trials showed that using the propane flamer in the spring for overwintering adults gave control of 70 to 80 per cent of the adult beetles and also killed nearly 50 per cent of the eggs. Late season control, the time of top killing, gave 95 to 100 per cent control of adult CPB. In addition, the 1994 story stated growers were “astonished at the level of weed control that came as a result of the flaming activity.” Even more interesting was the low level of plant damage from the flaming. The story states that in almost all locations of the study, slight plant injury similar to that observed when plants are hit by a late frost did occur. However, the growing tip of the plant was not affected, and most injury was unnoticeable after about a week. “Potato yields taken at four of the test sites showed no difference in yield between flamed and unflamed areas.” At the end of the day, physical methods to control Colorado potato beetle and other pests are seeing resurgence, as the very real threat of insecticide resistance increases.  
A new study at the Harrington Research Farm in P.E.I. is examining how to make buckwheat crops an even more effective and practical option for potato growers looking to control wireworm. Photo by AAFC. Growing two years of buckwheat in a potato rotation is effective at managing wireworms, one of the toughest pest problems for potato growers. But how does buckwheat actually affect wireworms, and can we make buckwheat rotation even more effective and practical for growers? A rotational study is underway on Prince Edward Island to answer these questions. The P.E.I. study is part of a major project to investigate different strategies for dealing with wireworms, led by Christine Noronha, a research scientist with Agriculture and Agri-Food Canada (AAFC). The project, funded by AAFC, involves AAFC scientists across the country because wireworms cause serious problems in many regions and many crops. Wireworms are the soil-dwelling larvae of click beetles. Canada has about 30 wireworm species of economic importance. In most species, the beetles lay eggs in the soil in the spring. A few weeks later, the larvae hatch. The larval stage lasts about four or five years, depending on the species. Then the larvae pupate and the adults emerge from the soil in spring. In potatoes, wireworms tunnel into the tubers, reducing marketable yield. The tunnels can also be entry points for potato pathogens. Noronha has been conducting wireworm research in P.E.I. for over a decade. Her rotational studies show growing either brown mustard or buckwheat as a cover crop for two years before growing potatoes can reduce tuber damage by about 80 per cent or more. Brown mustard is known to release chemicals into the soil that control wireworms, but the reasons for buckwheat’s effect on wireworms are not yet known. AAFC research scientist Aaron Mills is leading the new P.E.I. buckwheat agronomy study. It is taking place at the Harrington Research Farm and runs from 2014 to 2016. “Christine Noronha has done an excellent job at figuring out how to control wireworm with buckwheat; it’s now another tool in the toolbox for controlling wireworm. A big part of this new buckwheat study is to find out how and why buckwheat affects wireworms,” Mills explains. “We also want to establish local protocols for how to deal with buckwheat in the rotation, so growers wouldn’t be as intimidated by the potential for buckwheat to become a weed problem, and to establish some protocols for managing buckwheat as a grain as well.” Better understanding of how buckwheat impacts wireworms could potentially lead to advances that enhance wireworm control. For instance, one possibility is that buckwheat is releasing compounds into the soil that kill or suppress wireworms directly or perhaps affect other components of the soil ecosystem in ways that make conditions less favourable for wireworms. If such compounds are released when buckwheat foliage decomposes in the soil, then the most effective wireworm control strategy might be to disk the plant into the soil as a green manure. Or it may be best managed as a mulch, in which case flail mowing as a green manure may be best. If the compounds are released by the roots, then perhaps it might be better to let the buckwheat crop grow for a longer period before terminating it. If buckwheat produces compounds that deter other insect pests or pathogens, in addition to wireworms, then it could provide even greater benefits in the crop rotation. In the longer term, perhaps buckwheat lines could be selected that have higher levels of those compounds, or perhaps a bio-insecticide could be developed using the compounds. A key aspect of successfully including buckwheat in a crop rotation is to ensure volunteer buckwheat doesn’t become a weed issue. “Traditionally buckwheat has been grown as a weed control measure, and some growers are concerned about growing it because it can become a weed itself if you let it grow too long and go to seed,” Mills says. He explains buckwheat grows very well in P.E.I.; the seedlings emerge and grow quickly, enabling the crop to outcompete weeds. As well, some research indicates buckwheat releases chemicals into the soil that inhibit the growth of certain plant species. Those characteristics make buckwheat great at fighting weeds, but can also make volunteer buckwheat a problem for the next crop. Although letting buckwheat go to seed is a weed risk, growing buckwheat for grain would be an important opportunity for growers to obtain some income from growing two years of buckwheat for wireworm control. “Right now I would say the majority of growers on the Island are growing buckwheat for wireworm control, but I think people are interested in growing it as a crop for grain as well,” Mills notes. “I think the main export market for buckwheat is for use in noodles in the Asian market, although it has been grown in places like New Brunswick to make flour for buckwheat pancakes. And there may be opportunities in the health food industry; for example, buckwheat oil is reported to have some bioactive benefits.” Buckwheat also attracts pollinators and is used for honey production. Wireworms, organic matter, microbes and moreMills’ study is comparing five different three-year potato rotations. Three of the rotations involve two years of buckwheat and are comparing three strategies for terminating buckwheat: disking, flailing, and desiccating and then harvesting it for grain. “For termination through disking, we wait until the lower seeds start to drop off and then we use a set of disks to incorporate the aboveground crop material into the soil. For termination through flailing, we wait for the lower seeds to start to drop, and then go in with a flail mower and completely flail off the top of the aboveground biomass, leaving the residue on the top of the soil surface, almost as a smothering effect. And to manage buckwheat for grain, we desiccate the crop and then take it off with a combine,” Mills says. He adds, “We wait for the lower seeds to start to drop off when flailing or disking because we’ve found that buckwheat turns to jelly when you flail or disk it – the remaining residue breaks down fairly quickly. So rather than ending up with bare soil going into the winter, we wait for the lower seeds to start to drop off to make sure there will be a little bit of cover going into the winter.” For the three buckwheat treatments, Mills’ research team is measuring factors like buckwheat biomass and seed yield, as appropriate. The other two rotations in the study are traditional three-year potato rotations used in P.E.I.: barley underseeded with clover and then potatoes; and barley underseeded with a grass and then potatoes. These traditional rotations have benefits for soil conservation, but they favour the spread of wireworms because the beetles prefer to lay their eggs in grassy areas. The researchers will be gathering data on such factors as potato yields and the levels of wireworm damage in the tubers for the five rotations. As well, they will examine effects of the different rotations on water quality, soil organic matter content and soil nutrient levels, so nutrient management specialist Judith Nyiraneza and water quality specialist Yefang Jiang are involved in the study. “Although any green cover on the soil helps to reduce erosion, the study will be examining whether or not buckwheat is particularly good at preventing erosion or building up soil organic matter,” Mills says. “I think the jury is still out on whether buckwheat is a soil builder or not.” Buckwheat’s effect on soil nutrients also needs to be clarified. Some previous research has suggested buckwheat may make nutrients like phosphorus more available to the next crop, while other sources suggest buckwheat may reduce levels of certain nutrients. To better understand how buckwheat controls wireworms, Christian Gallant, a graduate student from Dalhousie University, is looking at the soil organism communities in the plots, especially the nematode communities, and also the fungal and bacterial communities. He will be examining how species diversity and populations change through the course of the growing season and with the different crops. Mills explains the value of examining nematode communities: “Most people focus on the plant parasitic nematodes. Those nematodes feed on plant roots, and the damage from their feeding also opens up spots for pathogens like Verticillium to enter the plant’s root system. But there is a whole other side of the nematode community. They all have specific jobs to do; there are bacterial feeders, fungal feeders and predators that feed on other nematodes and even mites. By studying the overall nematode community, we can get a snapshot of how things are happening biologically in the soil.” In addition, researchers will be testing the soil for buckwheat compounds that could be affecting soil organisms. “We’re trying to figure out if buckwheat is actually releasing chemicals into the soil that are affecting the soil pest populations, or if buckwheat is just a non-host for some of these pests,” Mills says. With one field season completed so far, Mills is looking ahead to the results from 2015 and 2016. “By the end of 2015, we’ll have a really good idea of how the different buckwheat treatments affect soil organisms, nutrients and organic matter, [and water quality]. And by the end of the study’s third year, we’ll have an excellent idea of how everything affects potato production.” In the meantime, growers are welcome to visit the Harrington Research Farm to see the plots and learn more about the study.      
April 28, 2015 - Farmers in Ontario are being offered expanded options to manage their empty seed and pesticide bags this year. This pilot is part of the agricultural industry's commitment to the responsible management of its products throughout their entire lifecycle and will help determine the feasibility of a permanent program. "This pilot project will build on the solid agricultural stewardship programming that is already in place in Ontario and provide farmers with more options for managing packaging waste on the farm and contributing to long-term goals of keeping agricultural waste out of landfills," says Barry Friesen, general manager of CleanFARMS. CleanFARMS will collect, transport and ensure collected bags are safely converted to energy at facilities that have extensive emission controls and meet all necessary provincial and federal approvals. Farmers can contribute to a clean and healthy environment by ensuring that empty seed and pesticide bags end up in the right place. "The end-of-life stewardship programs that CleanFARMS operates play an important role in our ongoing commitment to environmental stewardship," adds Mark Brock, chair of the Grain Farmers of Ontario. Funding for this pilot program is provided by CropLife Canada, the Canadian Seed Trade Association, the Ontario Ministry of Agriculture, Food and Rural Affairs, and the Ontario Ministry of Environment and Climate Change. WhenMay to September 2015 Collection SitesCollection sites will be located at participating retailers in Ontario. A list of participating retail collection sites can be found at CleanFARMS.ca. What Empty pesticide bags: multi-walled paper, plastic and aluminum Empty seed bags: multi-walled paper and polywoven plastic How to return Bags:Obtain free collection bags from select agricultural retailers Ensure that your seed or pesticide bags are empty Place the empty bags in the collection bag Return your full, tied bags to a participating retailer. Bags will be accepted free of charge and sent for safe disposal.CleanFARMS is a not-for-profit industry stewardship organization committed to environmental responsibility through the proper management of agricultural waste. For a list of all recycling programs, visit CleanFARMS.ca.
Chinese scientists will attempt to grow potatoes on the moon as part of a forthcoming lunar mission.
P.E.I. potatoes fetched good prices in 2016, continuing a trend that stretches back to 2004. The strong performance for Island spuds was shown in the farm product prices indexed released by Statistics Canada. | READ MORE
It may be a while before robots and drones are as common as tractors and combine harvesters on farms, but the high-tech tools may soon play a major role in helping feed the world's rapidly growing population.
Researchers say they’ve pinpointed individual spud plants infected with potato virus Y with 90 percent accuracy, using hyperspectral cameras mounted on drones.  Donna Delparte, an assistant professor of geosciences at Idaho State University, and graduate student Mike Griffel have successfully tested a “computer-learning” algorithm they developed to tease out PVY from spectral imaging “background noise,” such as field variability and unrelated crop stress. “Our premise was to look at all of these wavelengths of light the human eye can’t see and look for differences between healthy plants and plants infected with PVY,” Griffel said, adding their images had leaf-scale resolution. Griffel said the project detected disease well before potato crops reached the row-closure stage, far earlier than people can spot symptoms of PVY by scouting fields.  To develop their algorithm, they compiled crop data in fields over three seasons, ending in 2016. The researchers first analyzed fields from the ground with a high-tech camera capable of recording 100 bands of the light spectrum. After studying the images, they selected the 15 most useful bands for identifying PVY based on its unique light reflection. Delparte programmed more basic hyperspectral cameras mounted on drones to detect those bands while surveying the same potato fields from the air. | READ MORE  
  Covered Bridge Potato Chips has purchased new equipment and expanded its Hartland-area manufacturing facility with $867,000 in federal and provincial funding. Government officials and company president Ryan Albright did not respond to a request from CBC News for details about when the funding was provided. The announcement comes less than eight months after a strike and boycott at the plant ended with the signing of a new contract that included a pay increase for workers and more money for boot and clothing allowances. The contract dispute was settled after a New Brunswick judge rejected an application by Albright to dismantle the union. The nearly 836-square metre (9,000-square foot) expansion is expected to improve the company's efficiencies and optimize operating space to increase production of its old-fashioned kettle chips, which are made from dark russet potatoes, harvested from the Albright family's local farm. | READ MORE  
  While North American farmers are in the process of wrapping up a fourth-straight bumper harvest, according to the BMO 2016 North American Agriculture Report, foreign exchange developments have yielded very different experiences for producers in Canada and the United States. "In the United States, the lofty greenback, which has gained 20 per cent on a trade-weighted basis since the start of 2014, has been yet another bearish factor for crop prices and revenue," said Aaron Goertzen, Senior Economist, BMO Capital Markets. "Canadian producers, in contrast, have benefitted from a drop in the loonie, which is down 17 per cent against the U.S. dollar since the start of 2014 and has provided a like-sized lift to crop prices north of the border." Mr. Goertzen added that as a result of the weaker loonie, domestic crop prices in Canada are 18 per cent below all-time highs – compared to nearly 30 per cent in the United States – and have risen five per cent from their recent low in mid-2014. The lower loonie has been a particularly fortunate development given the country's mediocre crop yields over the past few years. Canadian Outlook In Canada, composite crop yields, which consist of corn, soybeans, wheat and canola, picked up modestly on last year's subpar result. However, they remained on-trend overall as a near-record crop of canola on the prairies was offset by a decrease in corn and soybean yields in Ontario. "Canadian producers have undoubtedly been supported by the weaker loonie," said Adam Vervoort, Head of Agriculture Banking, BMO Financial Group. "This means now, with extra capital available, is an ideal time to invest in technology, which is driving the current string of bumper crops we've seen on a North American scale." He added, "Those producers who have adopted modern agricultural practices, particularly in the corn space, have grown trend crop yields substantially. There's still room for autonomous, satellite-informed equipment to be refined and used, as the innovation trend shows no sign of slowing down." Producers in Canada's Western regions, namely Alberta and Saskatchewan, have experienced a more difficult season impacted by weather challenges since October that have delayed their harvest timeline. However, the prairies remain on track for a near-record crop of canola. Mr. Vervoort affirmed that producers in the West could have potentially seen stronger results weather permitting, but have managed to still sustain a decent crop turnaround. "The harvest conditions have not been ideal, but we continue to work with farmers negatively impacted by adverse weather." While Canadian producers benefitted from a timely fall in the loonie that lifted crop prices north of the border, it also raised the cost of internationally-priced inputs like energy and fertilizer. Most producers face a wide variety of Canadian dollar-dominated expenses though, so margins have ultimately benefitted on balance. From mid-2014 to early this year, the weaker Canadian dollar also caused food prices to inflate four per cent yearly. Consumers have been somewhat relieved as a result of the partial bounce-back of the dollar in the latter half of the year and a decrease in livestock prices.  
Nov. 3, 2016, Alberta – The Government of Canada has secured market access for Alberta seed potatoes to Thailand.Effective immediately, Alberta becomes the third province to have an export agreement with Thailand, joining Prince Edward Island and New Brunswick, both of which secured export agreements in 2009. Combined, these three provinces form about 76 per cent of Canada’s seed potato exports. Alberta’s seed potato exports to Thailand could be worth up to $2 million annually, according to industry experts, adding to the $5 million on average exported annually to that country. The increased access will advance the competitiveness of, and create new opportunities for, the seed potato sector.  
A P.E.I. farmer is taking stunning images of his fields to show people where their food comes from — from a whole new aerial angle. CBC News reports. | READ MORE
May 25, 2016, Prince Edward Island – A new study linking potatoes and increased risk of high blood pressure is being viewed with caution by the P.E.I. potato board and a local nutritional scientist. | READ MORE
April 28, 2016, Manitoba – French fry companies cutting back on process potato contracts is predicted to cause a fall in Manitoba's potato acreage this spring. | READ MORE
March 31, 2016 – Two Agrifac Condor Endurance sprayers are heading to Alberta this week. Manufactured in the Netherlands, the pendulum chassis eliminates boom movement makes sure that the weight distribution is equal on all four wheels. The chassis enables a 2,100 US gallon tank and booms up to 180 feet. Due to the design of the tank, no rest liquids stay behind, and the EcoTronicPlus display is the spray computer as well as the interface for machine settings. For more information on Agrifac and on the self-propelled sprayers, check out www.agrifac.com or www.agrifac.ca.
So far in the project, the drone has collected imagery from about 50 potato fields in New Brunswick. Photo courtesy of Bernie Zebarth, AAFC. Drones, or unmanned aerial vehicles (UAVs), are becoming increasingly popular with crop growers as an easy way to take a look at their fields. Now, researchers are fine-tuning the use of imagery from drones as a more advanced tool for precision management of Canadian potato fields. This work with drone imagery is part of a major five-year project to boost potato yields. “About three years ago, Potatoes New Brunswick and McCain Foods Canada came to me and said they were having issues in terms of potato productivity in Eastern Canada,” says Bernie Zebarth, a research scientist with Agriculture and Agri-Food Canada (AAFC) at the Fredericton Research and Development Centre. “The data across North America show a slow but steady average increase over time in potato yields, going up about five hundredweight per acre per year. But in Eastern Canada, that is not happening – the crop insurance data for New Brunswick suggest our yields are either stagnant or perhaps even decreasing slightly over time. “That’s a serious concern for industry. For example, a lot of New Brunswick’s potato production is for French fries for export. To export, you have to be competitive. If you start losing yield, then you become less competitive. So they asked us to work with them to see what could be done about it.” The project aims to increase yields by addressing the variability in productivity within potato fields. “The project has three main objectives. First, can we develop ways of mapping the variability in plant growth and yield in potato fields? Second, for the areas of the fields that are not performing well, can we identify why? And third, can we overcome those yield limitations?” Zebarth says. “In Eastern Canada, precision agriculture is an exciting new area for us, and this is part of what we’re doing in the project,” he adds. So, they are trying out tools like drones and yield monitors to map in-field variability as a first step towards managing that variability through precision agriculture. According to Yves Leclerc, McCain’s director of agronomy for North America, managing in-field variability is key to improving yields and profitability for potato growers. “We need to understand profitability not only at the field level but also the subfield level, and manage fields at that level. It is no longer enough to manage a field based on the average conditions; we need to be more precise [to achieve a field’s full yield potential].” The project’s initial phase, in 2013 and 2014, took place in New Brunswick only. For 2015 to 2017, the research is also taking place in Prince Edward Island and Manitoba. For the first two years, Potatoes New Brunswick, McCain Foods Canada, AAFC and New Brunswick’s Enabling Agricultural Research and Innovation program funded the project. With the expanded project, two additional agencies have come on board: the PEI Potato Board and the Manitoba Horticulture Productivity Enhancement Centre Inc. The project’s lead agency is Potatoes New Brunswick. To try to remedy yield limitations, the project team is looking at a wide variety of practices such as compost applications, fumigation, fall cover crops, nurse crops, furrow de-compaction and, in Manitoba, variable rate irrigation. “We’re looking at everything from drones and drone imagery, to the thousands of holes we’re digging to look at soil compaction, to compost applications, to soil salinity – everything. We want to make sure that there’s literally no stone unturned,” says Matt Hemphill, executive director of Potatoes New Brunswick. “There is no one-size-fits-all and no magic bullet in this process because we have such variability in soil and weather conditions.” Drone imagery – advantages and hurdlesA drone with a specialized camera and advanced software can be used to map in-field variability. The drone flies over the field in parallel passes to capture the entire field in a series of overlapping images. The camera can be set up to capture particular wavelengths of light; for instance, near-infrared wavelengths may be of interest because healthy plants reflect more near-infrared light than stressed or dead plants. So a near-infrared image of a field could potentially be used to identify patches where the plants are stressed due to problems like disease or low nutrient levels. “For instance, if we could use the imagery to identify the parts of a field that aren’t deficient in certain nutrients, then a potato producer wouldn’t need to waste time, energy and money in putting fertilizer products on those parts of the field,” Hemphill says. “Imagine, instead of broadcasting X number of tonnes per acre of lime across the whole field, you maybe only have to apply it to 25 per cent of the field. You can imagine how quickly those savings would add up. The same goes for other input costs.” Zebarth explains that, before drones became available, the main way to map vegetation patterns was with satellite imagery, which has advantages and disadvantages compared to drone imagery. “One advantage of satellite imagery is that it’s calibrated [so the imagery data is easier to use in advanced analysis]. But there are two big problems with satellites. The first one is that you can’t control when they capture imagery of your field – they only fly over the field every so often, and they can’t see through the clouds. In New Brunswick, we have a lot of cloud cover. The other disadvantage of satellite imagery is its low resolution; a ‘pixel’, an individual point of information, represents an area of maybe five by five to 30 by 30 metres in size [on the ground]. So we’ve never used satellite imagery very much to look at crops here in the East.” Drones avoid those disadvantages. The user can choose where and when to capture the imagery, as long the operator flies the drone safely and legally. (Anyone operating a drone in Canada must follow the rules set out in the Canadian Aviation Regulations and must respect all federal, provincial/territorial and municipal laws related to trespassing and privacy.) Cloud cover isn’t as much of an issue for drones because they fly below the clouds. And drone imagery is at a much higher resolution, about seven to 10 centimetres, depending on how high the drone is flown. These advantages are making drones popular with crop growers. “People are already using drones, mostly for qualitative assessment. Drones are fantastic for that,” Zebarth notes. “One such application is to have a visual look at your field. For example, if you fly the drone when the crop is beginning to emerge, you can really see the field’s variability – where the crop is already emerging and doing well, where it is just emerging, and where it hasn’t emerged yet.” Another qualitative application is to target field scouting. Zebarth explains, “In the image of the field, you might see a patch that looks different. The imagery won’t tell you what the problem is; it will just tell you something is there. So you can go out to the field and look at that patch to identify the problem.” However, the project team wants to take drone imagery a step further. “We’d like to get to where it’s a more sophisticated tool,” Zebarth says. “We want to determine quantitative differences, like trying to develop relationships between the imagery and things like yield and leaf area index, and so on.” McCain Foods has its own drone, camera and software for this type of geo-referenced field mapping, and it has trained two of its employees to operate the drone, one as a pilot and the other as a spotter. For the project, they are flying the drone over commercial potato fields in New Brunswick. So far, they’ve collected imagery for about 50 fields. They fly the drone over each field several times during the growing season. The first flight is when the soil is still bare, so they can look for differences in soil moisture and drainage across the field. The subsequent flights are timed to capture the crop during early and late emergence, mid-season, and early and late senescence. Zebarth says, “So we’re looking at: do we have variation in the soil, the early canopy growth, and the canopy die-down.” One hurdle in their quantitative use of drone imagery is to correctly stitch together all the individual images from the drone’s flight over the field. “The drone might take perhaps 50 to 100 different images of the field. Those images have to be pieced together, which is called ‘mosaicking.’ If you have a discrete object, like a house or a fence in the images, mosaicking is not too difficult because you can easily find that object in the different images and align them. But if all you have in the image are rows of potato plants, there is not much to align with,” Zebarth notes. “There is mosaicking software to do that, but it’s not perfect. So we’re working with one of the drone companies to figure out how to get the images almost perfectly lined up so you can get down to looking almost at the [individual] plants.” A second hurdle relates to calibration. “The drone’s camera is actually measuring how bright the light is in different bands; it is taking pictures that have red, green and blue, like a regular camera, but it may also have near-infrared. So it gives you a number from one to 255 in each of those bands, but it is just a relative number. To calculate things like vegetation indices, such as the NDVI [normalized difference vegetation index], you can use a relative brightness to get a relative value of the NDVI. However, you have to convert it to a reflectance value to get a true value for the NDVI that you can compare across fields or measurement dates. That’s where it has to be calibrated,” Zebarth explains. The researchers are making good progress with overcoming both of these hurdles. Plus, they are testing over 20 different vegetation indices to determine what each index is sensitive to and which ones work best for potato fields in New Brunswick. “For instance, one index might be mostly sensitive to how much coverage there is of green leaves, whereas another one might be more sensitive to how much chlorophyll is in the leaves,” Zebarth says. They’ve already found that the NDVI, a common index for measuring vegetation cover, isn’t the best choice for potato crops. “For potatoes, the NDVI reading initially goes up as the canopy develops, but after the canopy reaches a certain density, the NDVI becomes insensitive.” Some of the other indices don’t have that drawback. Once the researchers complete this work in the coming months, they’ll have a much better idea of how they can use the drone imagery. The information from this work could also help agronomists, crop advisors and growers with an interest in quantitative uses of drone imagery in potato production. “In the long run, drone imagery is going to be a tool to add to our arsenal of tools, for sure,” Leclerc says. Progress on agronomic findingsOne of the project’s key agronomic findings so far is the degree of variability in potato fields. “We are seeing a lot more variability in our fields than we had expected. Although some fields are relatively uniform, other fields have pretty dramatic variation,” Zebarth says. The results so far indicate that, in New Brunswick, much of the variability is due to the soil. “What we think has been going on is a gradual decline in soil health over decades,” Zebarth says. The wet spring in 2013 emphasized some of this soil variability. He says, “When we visited the field sites, we would see places in some fields where there wasn’t a single plant. It looked like problems with poor drainage or loss of soil structure or low soil organic matter. So that is why a lot of the remedies that we’re trying are ways to improve soil health, like compost applications or changing crop rotations.”   Leclerc notes, “The biggest challenge is determining the underlying causes of the differences in productivity. In some cases it’s fairly easy to pinpoint, especially [with the wet conditions] in the project’s first year, but in other cases it is a lot more difficult. We are examining that aspect with very precise soil and subsoil analysis.” Once a field’s variability is mapped and the causes of its differences in productivity are understood, then the field’s management zones can be defined and managed. “We can work on those management zones to improve the limitations, which are most likely soil-related. Or, if that cannot be done, the idea is to manage the different zones differently. So perhaps we might back off in terms of inputs on the lower productivity zones and reallocate those resources to the higher productivity zones, and look at changing the spacing perhaps on the higher productivity zones to take advantage of their higher yielding capabilities,” Leclerc says. After the trials with the various management practices are completed, the project team will analyze the results to see which practices provide the most consistent benefits, how effective they are, and under what conditions they are most effective, and to determine which options make the most economic sense.   “At the end of the day, we need to look at the input costs and profitability,” Hemphill says. “The outcome needs to work for the growers and the processors in order for the industry to remain sustainable.”   

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

Potato Research Day
Wed Aug 09, 2017
Ontario Potato Field Day
Thu Aug 17, 2017